Determination of Cellular Lipids Bound to Human CD1d Molecules
نویسندگان
چکیده
CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.
منابع مشابه
Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation.
Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery ...
متن کاملDistinct endosomal trafficking requirements for presentation of autoantigens and exogenous lipids by human CD1d molecules.
CD1d molecules present both self Ags and microbial lipids to NKT cells. Previous studies have established that CD1d lysosomal trafficking is required for presentation of autoantigens to murine invariant NKT cells. We show in this study that this is not necessary for autoantigen presentation by human CD1d, but significantly affects the presentation of exogenous Ags. Wild-type and tail-deleted CD...
متن کاملBinding and Antigen Presentation of Ceramide-Containing Glycolipids by Soluble Mouse and Human Cd1d Molecules
We have purified soluble mouse and human CD1d molecules to assess the structural requirements for lipid antigen presentation by CD1. Plate-bound CD1d molecules from either species can present the glycolipid alpha-galactosyl ceramide (alpha-GalCer) to mouse natural killer T cells, formally demonstrating both the in vitro formation of antigenic complexes, and the presentation of alpha-GalCer by t...
متن کاملNatural lipid ligands associated with human CD1d targeted to different subcellular compartments.
CD1d is an MHC class I-like membrane glycoprotein that presents lipid Ags to NKT cells. Despite intensive biochemical, genetic, and structural studies, the endogenous lipids associated with CD1d remain poorly defined because of the biochemical challenges posed by their hydrophobic nature. In this study, we report the generation of a protease-cleavable CD1d variant with a similar trafficking pat...
متن کاملA threonine-based targeting signal in the human CD1d cytoplasmic tail controls its functional expression.
CD1d molecules are MHC class I-like molecules that present lipids to a unique subpopulation of T cells called NKT cells. The cytoplasmic tail of human CD1d possesses a tyrosine-based endosomal targeting motif (YXXZ). As such, these molecules traffic through the endocytic pathway, where it is believed that they are loaded with the antigenic lipid that stimulates NKT cells. In the current study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009